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1. Introduction

The theory of particle/fluid mixtures, practically speaking, is really a set of model equations
which attempts to incorporate the major effects of particle interactions as guided by experimental
findings. A reasonable basis now exists for the theoretical description of the particle “collision”
(Leighton and Acrivos, 1987a,b; Phillips et al., 1992) caused by gradients of shear rate, viscosity
and volume fraction. Recently, and in order to explain certain experimental results with visco-
meters, collisions due to the changing curvature of particle paths have been postulated (Krishnan
et al., 1996). Although this model seems to yield good agreement with experiments (Shauly et al.,
1998), the physical basis of these interactions needs further elucidation. As the results of new
experiments are reported, especially those with particles of different sizes, other modifications,
additions and elaborations of the model will undoubtedly be required. One effect for consider-
ation here is that the smaller particles have much longer and more deviant paths of motion
(relative to their diameters) as they move about the larger elements of the mixture. For this
reason, the irreversible processes of collisions must have a greater effect per unit time on the
smaller particles which implies a diffusion that for each species is dependent on the particle di-
ameter of the other. The flow of a mixture in a pipe is considered anew from this postulation.

2. Formulation

The model equations for the motion of a non-dilute, neutrally buoyant mixture of spherical
particles of just two different sizes, are modifications of those used by Shauly et al. (1998).
Essentially there are equations for the conservation of each particle species:
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where ¢, is the volume fraction, v, is the velocity of species k and v¢ is the velocity of the
continuous fluid phase. Together these yield
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with ¢ = ¢, + ¢, and j = ¢, Va1 + P,va2 + (1 — ¢p)ve defines the volume averaged velocity. Con-
stitutive equations for the velocities are then taken to be
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where 7 is the strain rate of the volume averaged velocity field, a,, is the radius of each particle
species and a = (a; ¢, + ar¢,)/ ¢ is the scattering length associated with mean mixture quantities.
The particles are assumed to be neutrally buoyant. The last term of each equation describes the
additional interaction flux due to size differences of the particle species and consequently, the
greater frequency of collisions and increased dispersion of the smaller versus the larger particles of
the mixture. For simplicity, this flux is assumed to depend directly on the volume fraction and
particle diameter of the other component, the absolute difference in sizes and a function involving
the mixture strain rate and viscosity. Three separate expressions for f(7,#) have been considered,
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For slow motions, the momentum equation is
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with the stress tensor given in terms of the rate of strain tensor (of the volume flux field!) by
I = ny, 9)
where j = (37 : #)"/* and the viscosity of the mixture is
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A semi-empirical correlation for the effective viscosity (10), suggested by Krieger (1972), is here
combined with an expression for the maximum packing concentration (Eq. (11)), based on the
experiments of Probstein et al. (1994). The value ¢,,, = 0.68 was used in the numerical compu-
tations presented in the following section.

a — a

a2+a1

3. Results

For steady flow of a neutrally buoyant bimodal mixture in a straight cylindrical pipe, the time
independent equations must be solved subject to the boundary conditions that there is zero radial
flux of either component at the wall of the pipe and all quantities are bounded in the interior flow:

O\Va1 T =V -T=0 atr=1. (12)

The pressure gradient along the pipe is a constant, p, = —M, and since all other quantities are
functions only of the radius r, the equations reduce to a set of ordinary differential equations
which are readily solved numerically, and even analytically if a few simplifying approximations
are made. For example, let the two particle diameters be very different so that a;/a, < 1. It
follows that to lowest order in this parameter, ¢, is uniform across the pipe and equal to the value
at the wall

¢1 = ¢1w- (13)

The equation for the second component reduces to
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which for the currently accepted values, K. = K, /2, integrates to
P’ = Py Pulli (15)
Since j = |w,| = —w, = —(d/dr)k -j, and  — 0 as r — 0, the viscosity of the mixture must be-

come infinite at the center which implies maximum volume packing. Since ¢, is constant, ¢, must
increase towards the center of the pipe. The conclusion of this simple analysis is that there is a
separation of the two species — large particles migrate to the central region, small particles are
more uniformly distributed across the cylinder. In simple terms, the small particles act more like
molecules and together with the fluid form a “continuous” medium of increased viscosity in which
the large particles move.

Further analytical development of the theory leads to simple formulas for all variables, but
because the basic equations are integrated numerically without approximations regarding relative
particle sizes, only those results are presented in the interests of brevity.

The numerical results depicted in Figs. 1-5 were obtained by integrating the steady-state
equations for ¢, and ¢, subject to wall conditions (¢,,,, ¢,,) for the three different S-functions.
The boundary conditions ¢,,, and ¢,, were determined implicitly by specifying the average
volume fraction of each species
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Fig. 1. Steady-state radial concentration profiles for (a) model 1 and (b) model 3. Solid, dashed and dash-dotted curves
correspond to ¢, ¢ and ¢,, respectively. The parameters used in the computations were: a;/a; = 0.1, Dy, = 1.0,
¢,/¢p, =1.0 and ¢ = 0.35.
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Fig. 2. Steady-state radial concentration profiles for (a) model 1 and (b) model 3. Solid, dashed and dash-dotted curves
correspond to ¢, ¢; and ¢,, respectively. The parameters used in the computations were: a;/a; = 0.1, Dy, = 1.0,
¢,/d, =10 and ¢ = 0.35.
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In addition, transient profiles were obtained by solving the time dependent initial value problem
defined in Section 2. In each case, the steady-state profiles agreed with those of the steady
computations to within the discretisation error of the numerical method. The steady computa-
tions were performed using a variable-step Runge-Kutta method, and a Galerkin finite element
discretisation was applied to the transient problem. The details of the numerical schemes will be
presented elsewhere (Nigam, in preparation). The non-dimensional parameter measuring the
relative influence of the additional flux terms is Dy, = 4f, ,nc/(K,MR) for the first two models,
where R is the radius of the pipe, and D, = 2f;/K, for the third model. For moderate values of
this parameter, the effect of the § terms is mainly to enforce Eq. (17) below, and the differences
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Fig. 3. Steady-state radial concentration profiles for (a) model 1 and (b) model 3. Solid, dashed and dash-dotted curves
correspond to ¢, ¢, and ¢,, respectively. The parameters used in the computations were: a;/a, = 0.5, Dy, = 1.0,
¢,/p, = 1.0 and ¢ = 0.35.
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Fig. 4. Normalized radial and axial particle velocity profiles corresponding to Fig. 3 for (a) model 1 and (b) model 3.
The axial profiles are the same for both species and the radial profiles are related through vy = (a1/a2)va2. The
parameters used in the computations were: a;/a; = 0.5, D; = 1.0, ¢,/¢, = 1.0 and ¢ = 0.35.

between the steady-state results of models 2 and 3 are indistinguishable. Hence, only the results of
the latter model are presented.

Figs. 1(a) and (b) verify the main predictions of the asymptotic analysis. The larger particles
migrate as in a unimodal suspension (Phillips et al., 1992). An interesting phenomenon can be
observed in Figs. 2(a) and (b). When the ratio of the fine-to-coarse mean volume fractions is
increased, the coarse particles are forced towards the center of the pipe. Thus, a unimodal layer of
fine particles appears in the vicinity of the outer wall. The strong dependence on the particle size
ratio can be understood by looking at the governing equations. For pipe flow, the following exact
result is readily obtained for any non-zero value of D,

a%/a%
()"
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Fig. 5. Steady-state radial concentration profiles for model 3. Solid, dashed and dash-dotted curves correspond to ¢, ¢,

and ¢,, respectively. The parameters used in the computations were: a;/a, =0.5, ¢ =0.35, ¢,/¢, =1.0 and
Dy, = 1000.

For larger values of the particle size ratio, the differences between the models become more
pronounced (Figs. 3(a) and (b)). As the center of the pipe is approached, the influence of the
additional flux terms weakens for model 2 due to an increase in concentration, and even faster so
for model 3 because of the combined effect with a decreasing shear rate. In fact, the latter model
predicts a maximum packing concentration at the center of the pipe. In the first model, on the
other hand, the f-terms dominate at the center of the pipe, and the resulting concentration
gradients become weaker. The corresponding normalized radial and axial particle velocity profiles
are shown in Figs. 4(a) and (b). Note that the steady-state radial particle velocity profiles for the
two species only differ by the constant factor a;/a,.

In contrast to the strong dependence on the particle size ratio, the dependence on D, is rel-
atively weak. For the first two models, the ff-terms are active even in the absence of a flow, and the
corresponding coefficients, Dy,, must therefore be restricted to small values. This restriction does
not apply to the third model, and for large values of the parameter the volume fraction profiles
develop a boundary layer structure near the center of the pipe (Fig. 5).

4. Conclusions

Numerical results clearly show the adequacy of the simple theoretical analysis. Over an ex-
tremely wide range of parameter space, substantial particle separation occurs in a bimodal
mixture when the diameters of the two species differ by an order of magnitude — and this is a
conservative estimate. Essentially, the larger particles move in a continuum composed of liquid
with a uniformly dispersed, ‘““molecular’ constituent of the small particle, both together forming a
mixture of higher viscosity. This is consistent with the views and findings of Probstein et al. (1994)
who have used bimodal approximations of even more complicated mixtures to good effect.
Experimental evidence for radial size segregation of a bimodal suspension in pipe flow has
been provided by Husband et al. (1994). Their data indicated that the increase in total solids
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concentration near the center of the pipe always is accompanied by an increase in the relative
amount of coarse-to-fine particles. A closer look at the multi-modal formulation by Shauly et al.
(1998) reveals that this model instead predicts that the larger species is more uniformly distributed
for pipe flow.

Although the results obtained here are consistent with the limited experimental data available,
more definitive experiments are required in this regard to assert more or to determine the mag-
nitude of the various parameters introduced.

An important question, not resolved by the current model, is that some of the cases predict a
maximum packing concentration at the center of the pipe, caused by a zero shear rate. Including
the effects of a finite particle size on the shear rate would presumably prevent this from occurring
(Shauly et al., 1998). Another modification of the basic theory that requires attention, although
the improvement in most circumstances may be minor, is the replacement of the fluid strain rate,
based on the mass averaged or volume flux velocity fields, with one based on the particle velocity
field instead. Collision rates must entail the relative velocities of the particles with each other but
such an inclusion has not been considered as yet.
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